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In the last decade there has been an enormous progress in the mathematical

understanding of one-dimensional polymer measures, which are path measures

that suppress self-intersections. We are currently in the situation that many

interesting questions have either been answered, or that essential new ideas are

needed. In this survey paper, we discuss the most relevant results, open ques-

tions, and heuristics.
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INTRODUCTION

In the last decades, random polymers received an enormous amount of

attention from chemists, physicists and mathematicians. The problems in

this field are of practical interest and are, although easy to formulate,

rather difficult to solve. Many methods, like computer simulations, heuris-

tics, measurements, mathematical methods, etc., have been applied to

answer the main questions. Nevertheless, most of the important problems

about two-, three- and four-dimensional random polymers could not be

solved rigorously yet. In five or more dimensions, the situation is much

better, since starting in 1985 the so-called lace expansion has been turned

into a successful tool for the investigation of polymer and other statistical

physical models (see also Section 2.4).



Particularly in one dimension, after some pioneering work in the mid-

eighties, decisive progress in the mathematical understanding of random

polymers was made during the last decade. Many basic questions concern-

ing scaling behaviour and dependence upon model parameters have been

answered. We currently seem to be in the situation that many of the, in our

opinion, interesting problems have either been solved, or that the solutions

need essential new ingredients. We seem to have reached the limits of what

we can prove with the current techniques, and this survey paper is meant to

summarize the ‘‘state of the art.’’ We reflect the most relevant results about

one-dimensional random polymers, present some heuristic arguments, and

formulate a number of conjectures and remaining questions. We also

include a heuristic for a conjecture concerning two-dimensional polymers,

as the argument is related to a one-dimensional result. The two most suc-

cessful tools, large deviation techniques and the lace expansion, are

reviewed in some detail in Sections 1.3 and 2.4, respectively. We also

introduce some models that have not been investigated in the literature,

and give conjectures concerning the scaling behavior.

We do not assume any special knowledge other than basic probability

theory; this text is self-contained. The paper is organized as follows. In

Section 1, we introduce and discuss the basic model, the so-called weakly
self-avoiding walk. Some more detailed models, including additional fea-

tures like stiffness, repulsive media or inhomogeneity, are discussed in

Section 2. More fancy models and variants, like branching, charged, or

hetero-polymers, are presented in Section 3.

We will give a brief overview of the status in other dimensions than

one now. We will hardly mention results in dimensions other than one in

the rest of the paper.

There has been recent progress in the understanding of two-dimen-

sional self-avoiding walk, using the notion of conformal invariance. The

values of the critical exponents have been predicted by Nienhuis [Ni84],

and these values have been confirmed by Monte Carlo simulations. There

is also a mathematical explanation for these remarkable values by Werner,

Lawler and Schramm. Roughly speaking, it can be expected that important

questions for the scaling behavior of two-dimensional self-avoiding walk

could be answered if we would know that self-avoiding walk is conformally

invariant. However, even a proper formulation of the latter is not clear (see

the review paper [Wer00] and the references therein).

Any understanding of the three-dimensional polymer is lacking, as

even the physics literature does not offer any acceptable heuristics. There

are even no conjectures what the values of the critical exponents are, even

though there are estimates obtained using substantial Monte Carlo

simulations.
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There is also recent progress in the understanding of four-dimensional

(weakly) self-avoiding walk. It is expected that the endpoint, scaled like the

free walk, but with logarithmic corrections, tends to a Gaussian. This has

been proven by Brydges and Imbrie [BI1, BI2] for the so-called hierarchi-

cal lattice.

In high dimensions, the lace expansion has been used to show that

(weakly) self-avoiding walk scales as Brownian motion (see [HS94]). For a

more detailed explanation of the high-dimensional results, the interested

reader is referred to e.g., [BSp85, MS93, HS94], and the references therein.

The standard mathematical introduction to random polymers is [MS93],

and good introductory texts covering certain aspects of this subject are

[dH96, Sl96], and [Fr81]. For an introduction to polymer models from a

physicist’s or chemist’s point of view, see [Fl49, vdZ98] and [dG79].

1. WEAKLY SELF-AVOIDING WALK

1.1. Model and Motivation

A random polymer is a long chain of molecules which have the ten-

dency to occupy the space nowhere too tightly resulting in an effectice self-

repellence. The reason for this self-repellence is the so-called excluded-
volume-effect: It is energetically favorable for the polymer to spread out

over a large area. If S0, S1, ..., Sn denote the locations of the molecules,

then this means that there is a penalty for self-intersections, which are

index pairs i ] j such that Si=Sj. One way to describe a polymer is the

following model based on a random walk with self-repellence. We are going

to define the prototype of a polymer measure, a probability measure on n-

step paths in the space Zd.

Fix n ¥ N and let S=(S0, S1, ..., Sn) be the first n+1 positions of a

simple random walker on Zd, starting at the origin (S0=0). Let Pn be the

distribution of S (which is the uniform distribution on the set of all n-step

nearest-neighbor paths) and let En be expectation w.r.t. Pn. Introducing a

parameter b ¥ [0,.), we define a new path law Qn=Qbn by setting

Qn(S)=
1
Zn

e−Hn(S)Pn(S), where Zn=Ene−Hn (1.1)

and Hn=Hn(S) is the so-called Hamiltonian

Hn(S)=b C
n

i, j=0
i ] j

1{Si=Sj} (1.2)
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Fig. 1. A typical 200-step simple random walk path, and a typical 200-step weakly self-

avoiding walk path with b=1.

The law Qn is called the n-polymer measure with strength of self-
repellence b. Equations (1.1)–(1.2) define what is called the Domb–Joyce
model for ‘‘soft polymers’’ (see [MS93] Section 10.1). The n-step path

receives a penalty e−b for every self-intersection. This causes an effective

self-repellence, which tends to spread out the walk. This is clearly demon-

strated in a simulation of a two-dimensional simple random walk, respec-

tively, a polymer in Fig. 1. The figure is made using a Monte Carlo

simulation. The simple random walk has 414 self-intersections, while the

weakly self-avoiding walk only has 18 self-intersections, illustrating the

extreme self-repellence of weakly self-avoiding walk.

The boundary cases b=0 and b=. correspond to simple random

walk and (strictly) self-avoiding walk, respectively.3 Therefore, the Domb–

3 Indeed, for b=., the law Qn is the conditional distribution given that the path S has no self-

intersection.

Joyce model is often referred to as the weakly self-avoiding walk.

This simple model is just a caricature of reality. However, experiments

involving real polymers show that in dimension 3, the scale of the weakly

self-avoiding walk is very close to the scale of a true polymer in a so-called
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good solvent when the number of building blocks increases. Hence, this

model seems to capture the essence of a polymer in a good solvent.4

4 In terms of the critical exponent n defined in (1.24) below, we see that the experimental value

obtained from neutron diffraction studies is n=0.586±0.004, whereas the Monte Carlo

value for the critical exponent n for the tree-dimensional self-avoiding walk is n=0.588±
0.0015 (see [vdZ98] and the references therein).

Note that the parameter n is static. The measure Qn cannot be

obtained from Qn+1 by projecting onto the first n steps of the path. Indeed,

it is difficult to couple polymers of different lengths on one probability

space. This corresponds to the idea that growing polymers can completely

rearrange themselves in space in order to minimize their energy. Physically,

it models the situation in which the thermal motion is much faster than the

growth, so that the polymer can rearrange its shape each time it grows.5

5 A model, where the chain evolves randomly as the length parameter increases without being

able to rearrange itself is discussed in Section 3.4 below.

The double sum in (1.2) is called the self-intersection local time, i.e., the

time the walker spends at self-intersection points. In terms of the so-called

local times of the walk,

ln(x)=#{0 [ i [ n : Si=x}, n ¥ N0, x ¥ Zd (1.3)

Hn can be rewritten as

Hn(S)=b C
x ¥ Z

d
l2
n(x)−b(n+1) (1.4)

In this way, Qn arises from the free path measure Pn via a quadratic func-

tional of the local times.

The question that received the most attention is the determination of

the large-n behavior of the expected end-to-end distance of the polymer:

What is the asymptotics of EQn
|Sn | as nQ.? Deeper questions are the

limiting distribution of a properly scaled version of Sn or even of the whole

path (S0, ..., Sn) in an appropriate sense.

If not stated differently, we will henceforth restrict ourselves to the one-

dimensional case, i.e., we put d=1.

1.2. Main Results

It is not difficult to see that the end-to-end distance |Sn | should grow

linearly with n under the polymer measure Qn. (Note that EQn
(Sn)=0 by the

obvious left-right symmetry.) A first result into this direction was derived

by Bolthausen [Bo90] who showed that EQn
|Sn |/n is asymptotically

bounded away from zero as nQ. (for a much larger class of random
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walks than only nearest neighbour in Section 1.1). At first sight surpri-

singly, this result could only be proved for sufficiently small b. However,

later it was realized that the method used in [Bo90] is essentially an

expansion around the Edwards model (see Section 1.4) and is therefore

naturally restricted to small b (see also Theorems 1.3–1.5 below).

The main result for the one-dimensional weakly self-avoiding walk is

the following central limit theorem. By N we denote the standard normal

distribution.

Theorem 1.1. For every b ¥ (0,.), there exists h*=h*(b) ¥ (0, 1)
and s*=s*(b) ¥ (0,.) such that

lim
nQ.

Qn 1
|Sn |−h*n

s*`n
[ C2=N((−., C]) for every C ¥ Ra (1.5)

Moreover,

lim
nQ.

−
1
n

log Zn=r*(b) (1.6)

The quantity h* is called the speed of the polymer, whereas s* is called

its spread. In physicists’ language, Theorem 1.1 says that the weakly self-

avoiding walk behaves ballistically with normal fluctuations around the

linear drift. The law of large numbers contained in Theorem 1.1 was

proved by Greven and den Hollander [GH93] using a Markovian descrip-

tion of the local times in (1.3), combined with large-deviation arguments

and a spectral analysis. The central limit theorem was proved by König

[Kö96] via a construction of a transformed Markov chain. We will give a

sketch of these proofs in Section 1.3 below.

The rate function

I(h)=−lim
nQ.

1
n

log Qn(Sn % hn) (1.7)

is symmetric, and it has been shown in [Kö94] that I is real-analytic and

strictly convex in a neighborhood of h* and that the only zeros of I are

±h*. The latter assertion instantly implies the law of large numbers in

Theorem 1.1, and the fact that Iœ(h*) > 0 suggests the validity of the

central limit theorem in Theorem 1.1 with variance (s*)2=Iœ(h*)−1.

Pushing the arguments of [Kö94] forward, den Hollander [dH00] shows

that I is differentiable and convex in (0, 1) and is linear for h close to zero.
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In [GH93] it is proved that bWh*(b) is a real-analytic function

satisfying limba0 h*(b)=0 and limbQ. h*(b)=1. The following conjecture

is appealing:

Conjecture 1.2. The map bWh*(b) is strictly increasing.

Indeed, if the penalty for self-intersections is stronger, then we expect

the walk to spread out more. Unfortunately, we have no hope for proving

Conjecture 1.2 via a coupling argument since it is very difficult to couple

Qbn and QbŒn for b ] bŒ. Also the functional analytic description of h*(b)
obtained from the proof of Theorem 1.1 (see Section 1.3) is not explicit

enough to allow for a proof of Conjecture 1.2.

We have no doubt that also an invariance principle is true, i.e., the

scaled path ((s*)2 n)−1/2 (SNtnM−h*nt)t ¥ [0, 1] converges weakly towards stan-

dard Brownian motion. Tightness of the law of this process is an easy con-

sequence of the proof of Theorem 1.1, together with good bounds on the

normalizing constant Zn.
6 A proof for the convergence of the finite dimen-

6 Indeed, tightness for self-repellent models (see [MS93] Chapter 6) is implied by the two

conditions (1) EQn
(Sn−h*n)4=O(n2) and (2) the existence of limnQ. enr*Zn for some r* ¥ R.

Both properties follow from the proof of Theorem 1.1 for the one-dimensional weakly self-

avoiding walk.

sional distributions should follow from an obvious extension of the method

used in the proof of Theorem 1.1. However, the details have not been

carried out.

There is an intricate scaling behaviour as ba0. The following theorem

is taken from [HH95] and [HHK97b]:

Theorem 1.3. There exist a*, b*, c* ¥ (0,.) such that, as ba0,

b−2/3r*(b)Qa*, b−1/3h*(b)Qb*, s*(b)Q c* (1.8)

See the end of Section 1.3 for some explanation of the proof. In

Section 1.5, a sketch of a proof of the first two assertions is given. Here we

first give an intuitive argument for the first two scaling assertions in (1.8).

Assume that Sn % hn (meaning that Sn=NhnM or Sn=NhnM+1), and that the

path S spends all its time in between 0 and Sn. In this case, the minimal

value of the Hamiltonian in (1.4) is bh n. Indeed, the Hamiltonian is b times

the sum of squares of the local times, and the sum of the local times is

equal to n. Hence, the sum of squares is minimal when all local times are

equal to 1
h . In this case, Hn %

b
h n. The probability for Sn % hn is, for small h,

approximately e−nh2/2. In total, this gives that the contribution to the nor-

malizing constant of paths with Sn % hn is roughly e−n[b/h+h2/2]. Maximizing
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the exponential rate over h gives that the speed behaves as h*(b) ’ b1/3, and

the rate of the normalizing constant as r*(b) ’ b2/3. Here we use ’ to

denote equivalence up to constants.

Rigorous bounds on a*, b*, and c* appeared in [vdH98b]. The most

important bound is that c* < 1, which shows that there is a discontinuity

of the variance s*(b) at b=0, since s*(0)=1 for simple random walk. The

fact that limba0 s*(b) < 1 is deeper than the above simplified argument. It

is related to the analysis of the Edwards model, the continuous space/time

analogue of the weakly self-avoiding walk based on Brownian motion (see

Section 1.4).

The following result, taken from [HHK97b], deals with the case

where the self-repellence strength b=bn depends on n and tends to zero as

nQ.. It is clear that the result must be trivial if bn vanishes too fast. The

borderline is marked by the choice bn=n−3/2, where we have Brownian

scaling by the invariance principle (see also [BSl95] and Section 1.4

below).

Theorem 1.4. If b is replaced by bn Q0 and bnn3/2Q., then the

central limit theorem in (1.5) persists with h*=h*(bn)=b*b1/3
n (1+o(1)) and

s*=c*.

The message of Theorem 1.4 is that the limits nQ. in (1.5) and ba0
in (1.8) are uniform, so that they can be coupled by substituting h*=h*(bn)
and s*=s*(bn). The proof of Theorem 1.4 is a refinement of the proof of

Theorem 1.1 and is technically much more involved. A simpler proof of the

law of large numbers in Theorem 1.4 based merely on the weak con-

vergence of simple random walk to Brownian motion is presented in

Section 1.5.

1.3. Sketch of Proofs

The proof of Theorem 1.1 is based on two main ingredients: (1) a

Markovian representation for the joint description of the local times

(ln(x))x ¥ Z in (1.3) together with the endpoint Sn, and (2) a transformation

of the Markov chain involved to incorporate the factor e−Hn. The first idea

has been successfully adapted to prove similar results for other one-dimen-

sional path models. The second idea is a variant of a well-known technique

widely used in large-deviation theory (see e.g., the proof of Cramér’s

theorem). In the following, we outline the proof of Theorem 1.1. A more

thorough and extensive account of this proof is provided in [dH00].

We want to analyze the quantity En(e−Hn1{Sn % hn}) for h ¥ (0, 1),
where again % means that Sn=NhnM or Sn=NhnM+1. As a simplification of
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the problem, we assume that the path spends all its time until n in the

interval [0, hn]. This assumption can be justified for all h ¥ (h**, 1) for

some h** ¥ (0, h*).7 Certainly, in order to derive the full statement of

7 It turns out (see [dH00]) that, for h ¥ (0, h**), it is cheaper to spend a large fraction of time

outside [0, NhnM]. This leads to the fact that the rate function hW I(h) is linear for h ¥ [0, h**].

Theorem 1.1, one has to deal carefully with the pieces of the path that lie

outside the interval [0, hn], but let us neglect them for this outline. Hence,

we want to analyze the quantity Zn(h) defined by

Zn(h)=En 1exp 5−b C
0 < x [ hn

ln(x)26 1{Sn % hn} 1 3 C
0 < x [ hn

ln(x)=n42
(1.9)

The first main idea is that the local times are a simple functional of a

Markov chain. Indeed, let mn(x) be the number of up-crossings of the path

S from x to x+1, i.e., the number of steps from xQx+1. Then, on the set

{Sn % hn, ;0 < x [ hn ln(x)=n}, we have ln(x)=m(x−1)+m(x)−1 for all

0 < x [ hn. Furthermore, as is proven by Knight [Kn63], the sequence

(mn(x))x=0, ..., NhnM is a homogeneous Markov chain on N. More precisely, it is

a critical Galton–Watson branching process with geometric offspring

distribution and one immigrant per generation.8 In particular, this chain is

8 In fact, Knight used this observation as a main tool to establish the analogous continuous

assertion, the so-called Ray–Knight description of the Brownian local times.

null-recurrent. Its transition kernel is given by

P(i, j)=1
i+j−2

i−1 21
1
22

i+j−1

, i, j ¥ N (1.10)

Hence, if E denotes the expectation with respect to a Markov chain

(mx)x ¥ N0
with kernel P in (1.10), then we obtain that

Zn(h) % E 1exp 5−b C
0 < x [ hn

(mx−1+mx−1)26
×1 3 C

0 < x [ hn
(mx−1+mx−1)=n42 (1.11)

The second main step is a change to a transformed Markov chain such

that the quadratic functional is absorbed into the transition mechanism of

the new chain. For this purpose, define, for any r ¥ R, an infinite matrix

Ar, b by

Ar, b(i, j)=e r(i+j−1)−b(i+j−1)2P(i, j), i, j ¥ N
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Note that Ar, b defines a symmetric, compact and componentwise positive

operator l2(N)Ql2(N). Hence, it has a largest eigenvalue l(r, b) with

corresponding unique l2-normalized positive eigenvector yr=(yr(i))i ¥ N. We

define a stochastic matrix Pr, b by

Pr, b(i, j)=
Ar, b(i, j)
l(r, b)

yr(j)
yr(i)

, i, j ¥ N

Denote the law of a Markov chain (mx)x ¥ N0
with kernel Pr, b by P̂ r, b.

Observe that e rn=<0 < x [ hn e r(mx−1+mx−1) on the r.h.s. of (1.11). Hence, the

change of the Markovian measure yields

Zn(h) % e−rnl(r, b)hn P̂ r, b

1 C
0 < x [ hn

(mx−1+mx−1)=n2 (1.12)

(Note that the factors yr are telescoping.) The Markov chain has good

recurrence properties under P̂ r, b. In particular, y2r turns out to be the

invariant measure and m0+m1−1 has expectation “r log l(r, b) when the

chain is started in this distribution. Equation (1.12) is true for any r ¥ R. Now

we pick r=r(h) such that the probability P̂ r, b(;0 < x [ hn (mx−1+mx−1)=n)
does not decay exponentially fast. By the law of large numbers for ergodic

Markov chains and the fact that mx+mx−1−1 has expectation “r log l(r, b)
when the chain is started in the invariant distribution, this condition means

that “r log l(r, b)|r=r(h)=
1
h . This identifies the logarithmic asymptotics as

lim
nQ.

1
n

log Zn(h)=h log l(r(h), b)−r(h) (1.13)

Maximizing over h ¥ (0, 1) and using that “r log l(r, b)|r=r(h)=
1
h yields that

the maximal value h=h* is characterized by the two equations

l(r*, b)=1 and
1
h*
=“rl(r, b)|r=r* (1.14)

In particular, we also obtain the exponential rate of the normalizing con-

stant as

r*=r(h*)=−lim
nQ.

1
n

log Zn=−lim
nQ.

1
n

log Zn(h*) (1.15)
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Equations (1.13) and (1.15) yield the following analytic expression for the

rate function I in (1.7):

I(h)=r*−h log l(r(h), b)+r(h), h ¥ (h**, 1) (1.16)

For a proof of Theorem 1.1, one has to show that I is bounded away from

zero outside any neighborhood of ±h* and must fill in the gaps in the

analysis described so far for h=h*.

The proof of Theorem 1.3 follows from a scaling analysis for the

eigenvalue l(r, b) as r, bQ0. In fact, it is proved in [HH95] that, for any

a ¥ R, we have l(ab2/3, b)=1+b1/3(+(a)+o(1)) as ba0, where +(a) is the

principal eigenvalue of a certain second-order differential operator on

L2([0,.)). (This operator plays an analogous role for the Edwards model

(see Section 1.4) as the matrix Ar, b plays for the weakly-self-avoiding walk.)

The proof involves the notion of epi-convergence in terms of which the

convergence of the variational problem for l(ab2/3, b) towards the one for

+(a) is formulated. The constants a* and b* are characterized by

+(a*)=0 and +Œ(a*)=
1
b*

(1.17)

1.4. Relation to the Edwards Model

In this section, we define a continuous space/time analog to the

weakly self-avoiding walk, the so-called Edwards model.
Let B=(Bt)t \ 0 be standard Brownian motion on R, starting at the

origin. For T> 0 and a parameter b ¥ (0,.), formally define a path

measure Q̂T=Q̂bT by the Radon–Nikodym derivative

dQ̂T

dP̂
(dB)=

1
ẐT

exp 5−b F
T

0
ds F

T

0
dt d(Bs−Bt)6 (1.18)

where ẐT is the appropriate normalizing constant and P̂ is the Wiener

measure. The Edwards model at time T=1 appears as the natural scaling

limit for the weakly self-avoiding walk if the self-repellence strength b=bn
is chosen as bn=const. n−3/2; see [BSl95]. The law Q̂T is called the T-
polymer measure with strength of repellence b. As in (1.4), the double

integral in (1.18), also called the intersection local time, is rigorously defined

in terms of the Brownian local times (L(T, x))x ¥ R as

F
T

0
ds F

T

0
dt d(Bs−Bt)=F

R
L(T, x)2 dx (1.19)
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The following result is analogous to Theorem 1.1. The constants b*
and c* were introduced in Theorem 1.3.

Theorem 1.5. The central limit theorem in (1.5) but now for

(Q̂T)T> 0 holds for every b ¥ (0,.) if n is replaced by T, h*(b) by b*b1/3,

and s*(b) by c*.

The law of large numbers in Theorem 1.5 was first proved in [We84],

which was the first rigorous result for a one-dimensional polymer model,

up to our best knowledge (in [Ku84] a weaker version was proven). The

central limit theorem was proved in [HHK97a], using the continuous

version of the proof sketched in Section 1.3. Indeed, the Ray–Knight

theorems for the Brownian local times are combined with a Girsanov

transformation for the squared Bessel process involved. The objects defined

in the proof of Theorem 1.4 in [HHK97b], are discrete approximations of

the corresponding continuous objects appearing in the proof of Theorem

1.5 in [HHK97a]. One can consider Qbnn with bn a0 and bnn3/2Q. as a

discrete approximation to Q̂bTT with bT Q. as TQ..

It is noteworthy that the speed b*b1/3 in Theorem 1.5 depends on b in

such a simple manner and that the spread c* does not depend on b at all.

These facts are direct consequences of the Brownian scaling property, as

can be seen from an elementary calculation. Indeed, the law of BT under

Q̂bT is the same as the law of b−1/3Bb2/3T under Q̂1
b
2/3T. Recall that the spread

c* of the Edwards model is smaller than the spread of the free Brownian

motion, see [vdH98b]. Apparently, the self-repellence reduces fluctuations,

but we have no intuitive explanation for this phenomenon.

1.5. Weak-Interaction Limits

The results in the preceding subsections suggest that the Edwards

model is, in some sense, the weak-interaction limit of discrete polymer

models as the length n tends to infinity and the interaction strength b tends

to zero afterwards. This will be demonstrated by the following intuitive

calculation. It is possible to turn the argument below into a proper proof of

the first two scaling assertions in Theorem 1.3 using detailed knowledge

about the Edwards model as obtained in the proof of Theorem 1.5. This

idea and a possible extension to proofs of universality assertions and of

Conjecture 2.3 below are in [HHK01].

The argument is roughly as follows. For m ¥ R consider

Zbn(m)=En(e−Hn+mb
1/3Sn) (1.20)
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Fix a large T> 0 and assume that b is small. Splitting the polymer

(S0, ..., Sn) into nb2/3/T pieces of equal length and neglecting the interaction

between different pieces, we obtain the bound

Zbn(m) [ (ZbTb−2/3(m))nb
2/3/T (1.21)

Next we use the weak convergence as ba0 of the scaled walk

(b1/3Stb−2/3)t ¥ [0, T] towards standard Brownian motion (Bt)t ¥ [0, T] to see that

lim
ba0

ZbTb−2/3(m)=ẐT(m)=Ê 1exp 3− F L(T, x)2 dx+mBT42 (1.22)

Using this in (1.21), we see that

lim sup
ba0

lim sup
nQ.

1
b2/3n

log Zbn(m) [
1
T

log ẐT(m) (1.23)

From the proof of Theorem 1.5 in [HHK97a] one obtains an analytic

description of the limit of the r.h.s. as TQ. in terms of the function +

mentioned at the end of Section 1.3. In particular, one can easily derive (via

the exponential Chebyshev inequality and the Laplace method) that, for

any b > b*, Qbn(Sn > bb1/3n) vanishes as nQ. and ba0. The derivation of

the lower bound of the normalizing constant is technically more involved

and needs more detailed information of the Edwards model.

1.6. Heuristics for d=2

In this section, we will use Theorem 1.4 above to give a heuristic

argument showing that the size of the self-avoiding walk in dimension d=2
is n3/4. This argument is an adaptation of the well-known Flory argument

(see [MS93] Section 2.2). The Flory argument gives heuristic values for the

critical exponent

n=n(d)=lim
nQ.

1
log n

log EQn
|Sn | (1.24)

These values are nF(2)=
3
4 , nF(3)=

3
5, nF(d)=

1
2 for d \ 4 and are consistent

with Monte Carlo simulations except in dimension 3, where computer

simulations suggest that rather n(3)=0.588... . However, the original Flory

argument is extremely rough, and it is completely unclear to us why it is so

accurate.

We will give a refinement of this argument that relates two-dimensio-

nal strictly self-avoiding walk to one-dimensional weakly self-avoiding walk
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with an appropriate choice of b=bn. This argument can be extended to

higher dimensions. However, it becomes worse in higher dimension, and in

fact, in general dimension precisely gives the Flory exponents described

above.

Write Si=(S (1)
i , S

(2)
i ) for the two components. We may assume that

S (1)=(S (1)
0 , ..., S

(1)
n ) and S (2)=(S (2)

0 , ..., S
(2)
n ) are two independent one-dimen-

sional n-step simple random walks.9 We want to make a connection

9 In fact, the projections of S (1) and S (2) onto the lines with slope 1 and −1, respectively, are

two i.i.d. copies of one-dimensional simple random walks.

between

Z (n)
n =P 13

n

i, j=0
i ] j

{Si ] Sj} 5 {|Sn |=O(nn)}2 (1.25)

and the weakly self-avoiding walk model for S (1) with parameter b=n−n.

Later we derive the appropriate value of n ¥ [12 , 1].

Let E (1) be expectation w.r.t. S (1) and rewrite

Z (n)
n % E (1)

11{|S
(1)
n |=O(nn)} P 13

n

i, j=0
i ] j

{Si ] Sj} 5 {|S (2)
n |=O(nn)} | S (1)

22
(1.26)

Denote the local times of S (1) by ln(x). Recall that S (1) has precisely ln(x)
(ln(x)−1) self-intersections at x ¥ Z. In order that S has no self-intersec-

tions,S (2) must avoid self-intersections at precisely those;x ¥ Z ln(x)(ln(x)−1)
time pairs at which S (1) has self-intersections. Now we make the two cari-

cature assumptions that (1) self-intersections occur independently, and that

(2) the probability for a self-intersection of S (2) at a given time pair i ] j at

which S (1)
i =S (1)

j is roughly equal to n−n. (The idea behind (2) is that |i−j| is

typically large and that for |i−j| large S (2)
i −S (2)

j is more or less uniformly

distributed on {−Nnn/2M, ..., Nnn/2M}.) Hence, we have roughly

P 1 3
n

i, j=0
i ] j

{Si ] Sj} 5 {|S (2)
n |=O(nn)} | S (1)

2 % D
x ¥ Z

(1−n−n)ln(x)(ln(x)−1)

% exp 5−n−n C
x ¥ Z

ln(x)26

Using this approximation in (1.25), we have an approximation for Z (n)
n as

the partition sum of the Domb–Joyce model for S (1) with parameter b=n−n

and the additional indicator on the event {|S (1)
n |=O(nn)}.
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We know from Theorem 1.4 that the maximal contribution to

exp[−n−n ;x ln(x)2] comes from {|S (1)
n |=O(n1−n/3)}. Equating the optimal

power 1−n
3 with the power n under consideration, we obtain that n should

be equal to 3
4 .

The above argument is quite crude. For instance, it predicts that the

normalizing constant behaves as e−O(`n ), whereas we know that it is e−O(n).

This is due to the fact that the approximation is bad for i and j that are

close together, i.e., for short loops. The original argument by Flory was

even cruder. He assumed that both S (1)
1 , ..., S

(1)
n and S (2)

1 , ..., S
(2)
n are i.i.d.

uniform on {−Nnn/2M, ..., Nnn/2M}, and compared the probability for S to

have no self-intersections to the probability that Sn=O(nn). The Flory

argument was strongly criticized by des Cloiseaux [Cl75]. However, a

more careful analysis, using a mean-field approximation, in fact yields the

worse result n(3)=2/3. See [CPP94] for an explanation of the heuristic

method of des Cloiseaux.

Our neglect of the short loops in the heuristics above is considered

harmless, since it is the suppression of long loops that dictates the scale of

the polymer. Indeed, if we would only incorporate loops of length less than

or equal to m in the Hamiltonian, then we would only get the self-avoiding

walk scaling when m=mn Q. sufficiently fast. It is an interesting problem

to determine how fast mn should go to infinity for the scales of the two

models to be identical.

2. MORE REFINED MODELS

The weakly self-avoiding walk is a caricature of reality. In this section

we discuss some models that are more refined.

2.1. Repulsion and Attraction

This time, with two parameters b, c ¥ (0,.), we choose the Hamilto-

nian to be

Hn(S)=b C
n

i, j=0
i ] j

1{Si=Sj}−
c

2d
C
n

i, j=0
1{|Si−Sj |=1} (2.1)

and define a polymer measure Qn=Qb, cn by (1.1). This is a model for a

polymer in a repulsive solution. The first term in (2.1) is again the self-

intersection local time and models the excluded-volume-effect. The second

term, the number of self-contacts, models the fact that the polymer wants

to be close to itself because of the repulsion of the solution.
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The following theorem in [HK00] describes the qualitative behaviour

for different values of the parameters b and c in any dimension. In its sta-

tement, || · || is any norm on Zd.

Theorem 2.1. Let d ¥ N be arbitrary.

(i) For c< b there exist e=e(c, b, d) > 0 and c=c(b, c, d) > 0 such

that, for all n ¥ N,

Qb, cn 1max
n

i=0
||Si || [ en1/d

2 [ e−cn (2.2)

(ii) For c> b, there exists a constant c=c(b, c, d) > 0 such that for

sufficiently large L and all n ¥ N,

Qb, cn 1max
n

i=0
||Si || > L2 [ e−cLn (2.3)

The above theorem means that there is a phase transition between

collapse and infinite size at c=b. On the level of partition sums, this is

reflected by the facts used to prove Theorem 2.1 that lim supnQ.
1
n log Zn ¥

(−., 0) for c< b and lim infnQ.
1
n2

log Zn > 0 for c> b.
Specializing Theorem 2.1 to d=1, we see that for c< b the range of

the walk,

Rn=#{S0, ..., Sn} (2.4)

is of the order n, whereas for c> b it remains finite.10 For d=1 and all

10 For d \ 2, the situation is more complicated, and it is believed that a second critical curve

bW c*(b) exists with 0 < c*(b) < b. For c< c*(b), the behaviour of the polymer is expected

to be the same as for the weakly self-avoiding walk (c=0), whereas for c*(b) < c< b, the

endpoint should be of order n1/d.

c< b, it is expected that the statement of Theorem 1.1 holds. However,

van der Hofstad and Klenke [HK00] are only able to prove this for

c< b−1
2 log 2.

The critical case c=b is investigated in [HKK01] in d=1. It turns out

that, under Qb, bn , the endpoint Sn is of the order

an=
n1/2

(log n)1/4
(2.5)
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Furthermore, the accordingly scaled local times in (1.3) converge weakly to

some explicitly known function, characterized in terms of a variational

problem, whose support has size 2(92 b)
1/4. The main result in [HKK01]

identifies the limiting behavior of the range Rn in (2.4):

Theorem 2.2. Fix b> 0 and put d=1. Then, for any e> 0,

lim
nQ.

Qb, bn 1:
Rn

an
−2 1

9
2
b2

1/4

:> e2=0 (2.6)

2.2. Inhomogeneity

Instead of changing the interaction, one can also change the reference

measure in the definition of the polymer model. Let (Si)i ¥ N0
be some

random walk (starting at the origin) whose steps are symmetrically distri-

buted on {±1, ..., ±r} for some r ¥ N. The polymer measure Qn is again

defined by (1.1), where now Pn denotes the distribution of the path

S=(S0, ..., Sn). This is a model for an inhomogeneous polymer, which con-

tains molecules with different chemical properties such that the chemical

bonds between them are different. Note that Qn is now non-trivial and

interesting also in d=1 for b=. if r > 1, which is the strictly self-avoiding

case.

König proves the statement of Theorem 1.1 (see [Kö93, Kö94] and

[Kö96]), including the self-avoiding case b=.. Furthermore, he proves

that there exists a speed h*=h*(b, r) ¥ (0, r) which converges, as bQ.,

towards the speed h(., r) ¥ (0, r) of the self-avoiding walk. The proof is in

the spirit of the proof of Theorems 1.1, but the Markovian description of

the local times is much more complicated and less explicit, due to the fact

that the walker is allowed to make longer steps.

Aldous [Al86] conjectures the following. (The constant b* appearing

below was introduced in Theorem 1.3.11)

11 In fact, in [Al86] the factor b* is missing.

Conjecture 2.3. limrQ. r−2/3h*(., r)=b*3−1/3.

Aldous [Al86] proves a limit law for the appropriately scaled

sequence of self-intersection times of the free random walk (Si)i ¥ N0
(i.e., the

subsequent random times at which self-intersections occur) as the range r
tends to infinity. Conjecture 2.3 is based on interchanging this limit with

the limit nQ. and using Theorem 1.5. In [HHK01], the applicability of

the idea outlined in Section 1.5 to a proof of Conjecture 2.3 is investigated.
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Interestingly, via the results of [Al86] one could obtain the Edwards model

as a scaling limit of the inhomogeneous weakly self-avoiding walk as the

step range r tends to infinity.

It appears to be rather difficult to investigate the weakly self-avoiding

walk for a random walk whose steps are unbounded and lie in the domain

of attraction of a stable random variable other than a Gaussian. This

model would have some flavor of the two-dimensional nearest-neighbor

weakly self-avoiding walk.

2.3. Two-Dimensional Strip

In this example, we change the reference measure in (1.1) in the

following way: We do not use simple random walk on Z, but on the two-

dimensional strip {−r, ..., r}×Z for some r ¥ N. This is a model for a two-

dimensional polymer which is forced to stay between two fixed bounds in

one space direction. The constraint makes it essentially a one-dimensional

object. Indeed, this model turns out to be much closer to the one-dimen-

sional inhomogeneous model in Section 2.2 than to the two-dimensional

self-avoiding walk.

Write Si=(S (1)
i , S

(2)
i ) for the two components. It would not be difficult

to formally adapt the proofs of [Kö93, Kö94] and [Kö96] to obtain a

central limit theorem for S (2)
n analogous to Theorem 1.1 (and an additional

limit law for S (1)
n on {−r, ..., r} as well), although the precise formulas may

be difficult to tract. The proof of the law of large numbers, at least in the

self-avoiding case b=., has indeed been carried out by Alm and Janson

[AJ90], in fact for more general lattices than the strip {−r, ..., r}×Z.

Their proof is in the spirit of the proof of [Kö93], but uses a different

language.

Unfortunately, all attempts have failed so far to say anything non-

trivial about the asymptotics of the speed of the second component of the

polymer as the strip width r tends to infinity. The conjecture is that the

speed limnQ. EQn
|S (2)

n |/n behaves like r−1/3. This result would be a major

step towards the solution of the famous open problem of identifying the

scaling for the two-dimensional self-avoiding walk. Indeed, under Qn, we

would then have |S2
n| % nr−1/3 and |S1

n| % r. Assuming homogeneity and

equating the two, we find that the appropriate scale r=rn for the two-

dimensional self-avoiding walk satisfies r=nr−1/3, or r=n3/4. However, a

justification of the coupling of the limits nQ. and rQ. seems to be

difficult.
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2.4. Short-Range Interaction

Fix parameters b ¥ (0,.) and p ¥ R. For a path S=(S0, ..., Sn), define

the Hamiltonian by

Hn(S)=b C
n

i, j=0
i ] j

1{Si=Sj}
|i−j|p

(2.7)

and define the measure Qn=Qb, pn as in (1.1). This is a model in which, for

p > 0, long loops are punished less strongly than short loops. Therefore,

this model is sometimes referred to as the forgetful weakly self-avoiding

walk. Note that Hn is, for p ] 0, not a functional of the local times in (1.3).

Therefore, the previous approach cannot be used. Again, the question for

the large-n asymptotics of the expected end-to-end distance of the polymer,

EQn
|Sn |, is of interest. This model contains some flavor of the two-dimen-

sional polymer model since it requires some control on the structure of the

set of time-pairs at which self-intersections occur (not only on their

number).

Caracciolo et al. [CPP94] conjecture that the critical exponent

n(1)=n(1, p) in (1.24) assumes the values

n(1)=3
min{2−p, 1} for p [ 3

2

1
2 for p \ 3

2

(2.8)

Hence, one expects that the polymer behaves diffusively for p > 3
2 (with

logarithmic corrections for p=3
2) and ballistically for p [ 1, while the criti-

cal exponent interpolates linearly in between. There are two partial proofs

for these conjectures: for p > 3
2 and small b, and for p [ 1 and large b. (The

intermediate regime p ¥ (1, 32) is considered much more difficult.) In both

cases, the so-called lace expansion proved to be useful. The lace expansion

is a diagrammatic resummation technique that produces a recursive rela-

tion for the Fourier transform of certain relevant quantities. See [MS93]

Chapters 5 and 6 for a more detailed exposition of the lace expansion and

an application to the (weakly) self-avoiding walk in dimension d \ 5. The

method recently received new attention when the idea was incorporated not

to use this relation in order to analyze the Laplace transforms, but instead

drive a carefully formulated induction hypothesis in the parameter n (see

[HHS98]). Nevertheless, an essential assumption for the method to work is

still a very simple path measure to which one compares the model under

interest, which enforces a sufficiently small choice of the interaction param-

eter b.
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In the diffusive case, van der Hofstad, den Hollander and Slade

[HHS98] prove the following.

Theorem 2.4. For all p > 3
2 , there exists a b0=b0(p) such that for

all b ¥ (0, b0(p)]

lim
nQ.

Qb, pn 1
Sn

s`n
[ C2=N((−., C]) for every C ¥ Ra (2.9)

The proof uses the lace expansion in the traditional setting which

compares the forgetful weakly self-avoiding walk to simple random walk,

which is a simple path measure. For this, we need the interaction to be

local, which technically turns out to mean that ;n ¥ N n1−pcn(0) e r*n <..

Here cn(x) is the expected contribution to the normalizing constant of n-

step paths ending precisely in x ¥ Z, and r* is the exponential rate of the

normalizing constant. Thus, if we have diffusive behaviour, then we expect

that cn(0) e r*n ’ n−1/2, and the summation criterion becomes

;n n (1−2p)/2 <., or p > 3/2. The above criterion turns out to be sharp.

Indeed, the lace expansion gives that for the Fourier transform ĉn+1(k) of

cn+1(x) we have the following recursion equation

ĉn+1(k)=cos(k) ĉn(k)+C
n

m=2
p̂m(k) ĉn+1−m(k), k ¥ [−p, p] (2.10)

where pm(x) is a correction term whose smallness is important for the

method. Note that cos(k) is the Fourier transform of the distribution of a

single step of simple random walk, so that the first term corresponds to

ignoring the interaction of the first step with the other n steps. The term

pm(x) corrects for the intersections between the first step and the other n
steps. The main work in [HHS98] consists of showing that, for p > 3/2
and small b> 0, we have that p̂m(k) is small with respect to ĉm(k). Hence,

we can think of the above model as a small perturbation of simple random

walk, and (2.10) allows for an induction in n.12 For p ¥ [0, 1), on the other

12 In fact, Theorem 2.4 holds in general dimension (as long as p > d−4
2 ) as the summation cri-

terion suggests. This result in particular shows that the weakly self-avoiding walk behaves

diffusively in d \ 5. Hara and Slade [HS92a] in fact show diffusive behavior for strictly self-

avoiding walk, and this proof is quite delicate and computer assisted.

hand, Kennedy [Ke94] proved a weaker version of Theorem 1.1 using a

renormalization type argument. Indeed, he showed that for any e ¥ (0, 1)
there exists a b0=b0(e) ¥ (0,.) such that for all b \ b0 the probability of

{|Sn | > (1−e) n} under Qb, pn converges to one as nQ.. We expect that the
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method used by Kennedy can be extended to show that for any b> 0 there

exists an e> 0 such that the probability of {|Sn | > en} under Qb, pn con-

verges to one.

Van der Hofstad [vdH00] extends the previous result to a full central

limit theorem, and includes the critical value p=1:

Theorem 2.5. For all p ¥ [0, 1], there exists a b0=b0(p) ¥ (0,.)
such that for all b \ b0, the central limit theorem in (1.5) holds with some

appropriate h*=h*(b, p) ¥ (0, 1) and s*=s*(b, p) ¥ (0,.).

Van der Hofstad uses an adaptation of the lace expansion described

above to compare the forgetful weakly self-avoiding walk model for large b

to the strictly self-avoiding walk (b=.), which is an extremely simple

process in dimension one. Here e−b is the parameter that has to be chosen

small enough in order to make the method work.

It is difficult to adapt the Markovian method described in Section 1.3

to the forgetful weakly self-avoiding walk since one needs information

about the time that has elapsed between self-intersections, which is much

more than the local times in (1.3), and one seems to be unable to do that. A

second serious difficulty arises from the fact that the path properties seem

to be determined on scale eO(n
1−p) rather than eO(n), as the proof of Theorem

2.5 in [vdH00] suggests. This is the content of the next conjecture:

Conjecture 2.6. For every p ¥ (0, 1] and b> 0, the rate function I
in (1.7) exists on [−1, 1]. Furthermore, there exists a h*=h*(b, p) ¥ (0, 1)
with the following properties.

(i) limnQ.
1
n E

b, p
n (|Sn |)=h*,

(ii) I is identical to zero on [−h*, h*] and strictly positive outside this

interval,

(iii) For any h ¥ [−h*, h*],

−lim
nQ.

1
n1−p log Qb, pn (Sn % hn)=

b

2(1−p) hg2−p (h*−|h|)1−p (2.11)

A heuristic explanation for Conjecture 2.6 (iii) is the following. For

0 [ h< h*, the best strategy for the path is to first move up with speed h*
up to time 1+h

2h* n, and then to move down with speed −h* up to time n, so

as to arrive at hn. Paths with speed h* visit every point roughly 1
h* times.

Hence, the interaction between the two parts of the path is roughly equal

to n1−p times the r.h.s. of (2.11). However, this term is equal to the extra

cost in comparison to a path that has precisely slope h*.
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3. RELATED MODELS

3.1. Branching Polymer

The weakly self-avoiding walk serves as a model for a polymer that is

linear in structure, since the building blocks of the polymer can make at

most two connections to other building blocks. We next define a model

that allows for more connections, and serves as a model for branching
polymers.

We first define the Poisson branching process conditioned on a fixed

family size n. We start with a single individual having t offspring, where t

is a Poisson random variable of mean 1, i.e., P(t=m)=(em!)−1. Each of

the offspring then independently has offspring of its own, with the same

critical Poisson distribution. This defines the family tree T. We are inter-

ested in trees of size |T|=n. This will correspond to polymers of a fixed

number of building blocks. These trees are completely determined by the

set of offspring numbers (ti)i ¥ T, where ti is the number of offspring of

particle i ¥ T.

We next define the branching random walk. This is a random map S
mapping each individual of the family tree T to Zd, such that the root is

mapped to the origin and adjacent vertices in the tree are mapped to

nearest neighbors in Zd. Given the family tree T, each random map S is

equally likely. The reference measure on configurations (T, S) is then given

by13

13 To see that this is indeed Poisson branching random walk measure conditioned on tree size

n, note that for a Poisson(1) branching process we have that P(T)=<i ¥ T
e−1

ti!
, and

P(|T|=n)=nn−1

n! e
−n (see e.g., [BCHS99]).

Pn(T, S)=
1

(2d)n−1

nn−1

n!
D
i ¥ T

1
ti!

(3.1)

We will refer to the pair (T, S) as an embedded tree in Zd.

The branching polymer model is now formally defined as in (1.1),

where the Hamiltonian Hn=Hn(T, S) is given by

Hn(T, S)=b C
i, j ¥ T : i ] j

1{Si=Sj} (3.2)

The measure Qbn on the set of embedded n-site trees rewards self-avoidance

by giving a penalty e−b to each self-intersection of an embedded tree, i.e.,

to each pair i ] j ¥ T with Si=Sj.
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In [BCHS99] it is shown that, for fixed n and as bQ., the measure

Qbn converges towards a distribution Q.n on embedded trees in Zd having no

self-intersections, i.e., on pairs (T, S) such that Si ] Sj for all distinct

i, j ¥ T. Moreover, this measure turns out to be uniform in the following

sense. A lattice tree is a finite connected set of bonds that contains no

cycles. Here, a bond in Zd is a pair {x, y} of sites x, y ¥ Zd with

||x−y||1=1. If we sum out Qn(T, S) over all combinations (T, S) such that

the image of T under S is a fixed lattice tree L of size n in Zd, then the

resulting measure on lattice trees is the uniform measure.14 The above con-

14 This is true only for a Poisson offspring distribution.

struction is in the spirit of the self-avoiding walk. If we take the limit of

bQ. for the weakly self-avoiding walk, then the resulting measure is the

uniform measure on all n-step self-avoiding paths. Hence, we can think of

lattice trees as branching self-avoiding walks. Therefore, we will refer to the

above weakly interacting model as the branching weakly self-avoiding walk.

Define Rn to be the number of distinct points visited by the branching

weakly self-avoiding walk. It is easy to adapt the argument for the weakly

self-avoiding walk to show that with overwhelming probability Rn \ En for

some E> 0 sufficiently small. We have the following more precise

conjecture:

Conjecture 3.1. Fix d=1. For all b ¥ (0,.), there exists

h*=h*(b) ¥ (0, 1), such that, for every e> 0,

Qbn 1:
Rn

n
−h* :> e2=0 (3.3)

Moreover, limba0 h*(b) b−3/7 exists in (0,.).

Let us give a heuristic explanation of the scaling described above. As

in Section 1.2, bh n is the minimal value of the Hamiltonian in (3.2) when the

range is hn. The probability that the range is of order hn is, for small h,

approximately equal to e−h
4/3n.15 The optimal h we find as in Section 1.2 by

15 This is consistent with the fact that the typical size of the range is n1/4 (see e.g., [BCHS99]),

since substituting h=n−3/4 gives that this probability is O(1). Moreover, the above asympto-

tics can be proved for critical binary branching by using the analogy of binary branching to

one-dimensional random walk excursions. Any finite variance critical branching is expected

to lie in the same universality class.

maximizing the exponential rate of e−n[b/h+h4/3], i.e., the contribution from

the Hamiltonian given that the range is hn times the probability to have

range hn. This gives that h*(b) ’ b3/7, and that the exponential rate of the

normalizing constant scales as r*(b) ’ b4/7.
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There has been considerable progress also in high dimensions, where it

has been proved that the limit is integrated super-Brownian excursion

(ISE), which is a random probability measure and can be regarded as super-

Brownian motion conditioned on total mass equal to one (see [HS94,

DS98, DS97] and the references therein). ISE is known to arise as the

scaling limit for b=0 when space is scaled by a factor n1/4 as nQ. in all

dimensions (see e.g., [BCHS99]). In this respect, ISE plays a similar role

for branching random walk conditioned on fixed family size as Brownian

motion does for simple random walk.

There should be a close connection between the above scaling conjec-

ture for small b to a continuous-time model on the basis of ISE as for the

weakly self-avoiding walk (see Section 1.4). Indeed, consider super-Brow-

nian motion conditioned on total mass equal to T> 0 which is a scaled

version of ISE. This process has a density in R. Now we define a Hamilto-

nian which is b times the integral over the square of the density of this

process. The resulting measure is a continuous space/time polymer model

like the branching weakly self-avoiding walk. We call this model the

branching Edwards model. We conjecture that, as T tends to infinity, the

support of the random measure in this model satisfies a law of large

numbers with speed equal to bb3/7, and the scaling of the exponential rate

of the normalizing constant is ab4/7. The constants a and b should be the

scaling limits of h(b) and r(b) in the branching weakly self-avoiding walk.

3.2. Charged Polymer

Let w=(wi)i ¥ N0
be an i.i.d. sequence of centered random variables

with variance one, which play the role of an electrical charges of the mole-

cules. We use the (random) Hamiltonian

Hw
n=b C

n

i, j=0
i ] j

wiwj1{Si=Sj} (3.4)

which is the total electrical interaction charge of the polymer S=
(S0, ..., Sn): opposite charges of pairs of two molecules at the same site give

a negative contribution, whereas equal charges give a positive contribution.

We again define the polymer measure Qn=Qwn (which is now random) by

(1.1).16 Again we ask for the large-n behavior of |Sn | under Qwn , this time

16 A continuous variant of this model is considered by Buffet and Pule (1997) in [BP97].

almost surely with respect to the charge configuration w. This is the so-

called quenched setting, in contrast to the annealed one, where one
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averages out over the charges. (Physicists may consider the quenched

setting more realistic.)

To the best of our knowledge nothing is known about the quenched

problem, and we also cannot offer any conjecture. On the other hand, in

the annealed setting there is a result that occurred as the by-product in a

study of the parabolic Anderson model by Biskup and König in [BK00].

Denote expectation with respect to w by O ·P. Note that the mean of e−Hwn

with respect to w can be expressed in terms of the local times in (1.3) as

Oe−HwnP=exp 3 Cx ¥ Z
d
F(ln(x))4 , where F(l)=log 7exp 3−b 5 C

l

i=1
wi6

2

48

According to the invariance principle, ; l
i=1 wi is approximately normal

with mean 0 and variance l. This implies that F(l)=1
2 log(1+bl)(1+o(1))=

1
2 log l(1+o(1)) as lQ.. Hence, the annealed partition sum En Oe−HwnP falls

into the class of models analyzed in [BK00], and the result reads:

En Oe−HwnP=exp{−r*nd/(d+2)(log n)2/(d+2) (1+o(1))}, nQ. (3.5)

Here r* ¥ (0,.) is independent of b.

The proof suggests that under the annealed measure the end-to-end

distance |Sn | behaves like ( n
log n)

1/(d+2). We can see this heuristically in the

following way. Assume that Sn ’ an for some deterministic sequence

an Q.. Assuming homogeneity, the local times are of order n/adn, so that

;x F(ln(x)) % a
d
n log(n/adn). We easily see that the interaction is self-attrac-

tive, so that we assume that an=o(`n). Then the probability that Sn ’ an is

roughly e−n/2a2n. Hence, we find that the appropriate an is obtained by

maximizing e−[adn log(na−d
n )+n/2a2n], yielding an=( n

log n)
1/(d+2) (const.+o(1)) and

suggesting (3.5).

3.3. Heteropolymer

Let w=(wi)i ¥ N be an i.i.d. sequence of random variables taking values

±1 with probability 1
2. For n ¥ N, define the (random) measure Qn=Ql, h, wn

on n-step paths via (1.1) by setting

Hn(S)=l C
n

i=1
(wi+h) sign(Si) (3.6)

where h ¥ [0, 1), l ¥ [0,.) are parameters.
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Equation (3.6) models a polymer near an interface in the following

way. Think of (i, Si)
n
i=0 as a directed polymer consisting of n+1 building

blocks, where time is viewed as an extra spatial dimension. Think of the

upper half plane as ‘‘oil’’ and the lower half plane as ‘‘water.’’ There are

two types of building blocks, occurring randomly with equal probability

and indexed by w : wi=+1 means that building block i is attracted by

‘‘water,’’ while wi=−1 means that building block i is attracted by ‘‘oil.’’

For h ¥ (0, 1), the polymer has an overall tendency to prefer ‘‘oil,’’ so that

Si is more likely to be positive.

Bolthausen and den Hollander [BoH97] investigate this model in

dimension one. They define the polymer to be localized if

lim
nQ.

1
n

log Zl, h, wn > lh (3.7)

and delocalized when the limit equals lh. (The limit exists w-a.s. and is non-

random.) They prove that there is a phase transition, i.e., for every l> 0
there exists a critical value hc=hc(l) such that there is localization for

0 [ h < hc, while there is delocalization for h \ hc. Moreover, they prove

some bounds and asymptotics of lWhc(l). Intuitively, in the localized

regime the polymer wobbles around the interface with high probability. In

the delocalized regime, on the other hand, the frequency of time the

polymer spends in the ‘‘oil’’ converges to 1 (see Biskup and den Hollander

[BiH97]). Note that if the polymer is always in the upper half plane, then

we have equality in (3.7), since in that case sign(Si)=1 for all i and

;n
i=1 wi=o(n) a.s. by the law of large numbers applied to w. Furthermore,

Biskup and den Hollander [BiH97] prove that in the localized regime the

tails of the distribution of the height of the path at any time in between 0

and n are exponentially small. Furthermore, the interface is visited a posi-

tive fraction of the time. This result was already proved for h=0 by Sinai

[Si93].

In the delocalized regime, where the path spends most of its time

above the interface, it is expected that the law of (n−1/2SNtnM)t ¥ [0, 1] under Qn

converges weakly. Indeed, since the law of (S0, ..., Sn) under Qn only

depends upon the signs of S0, ..., Sn, this property should follow from the

well-known conditional weak convergence of (n−1/2SNtnM)t ¥ [0, 1] under the

free random walk given that Si > 0 for all 0 < i [ n.

3.4. Myopic Self-Avoiding Walk

A mechanism for a polymer measure different from the model in (1.1),

the so-called myopic random walk, is defined in one dimension as follows.

Given a parameter b ¥ (0,.), conditionally on the path (S0, ..., Sn), we
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define Sn+1 as Sn−1 or Sn+1 with probability proportional to e−bln(Sn−1)

and e−bln(Sn+1), respectively. In words, the polymer chain evolves step by

step randomly and chooses one of the two nearest neighbors of the current

position with probability proportional to the negative exponential of the

current number of molecules in the two neighboring sites. Let Qn be the

distribution of the chain (S0, ..., Sn). Then (Qn)n ¥ N is a consistent family of

path measures (i.e., Qn is the projection of Qn+1 on n-step paths) and is a

model for a growing polymer chain.17 The myopic self-avoiding walk

17 This model is sometimes called the ‘‘true’’ self-avoiding walk.

models the situation in which the polymer growth is much more rapid than

the thermal motion of the building blocks of the polymer, so that the

polymer does not have the opportunity to rearrange itself during its

growth.

Note that the strictly self-avoiding version of this model (i.e., the

model with b=.) is not well-defined in general dimension, since the chain

may ‘‘get stuck in a trap’’ where it is not possible to avoid self-intersections

in future. The appropriate version for b=. should be the model that

arises by taking bQ.. In this model (which is not self-avoiding) the respec-

tive steps of the chain are chosen uniformly from the set of neighbors with

minimal local time.

See [PP87] for non-rigorous scaling arguments and numerical simula-

tions, which suggest that EQn
|Sn | % nn(d) for large n, where n(1)=2

3 and

n(d)=1
2 for d \ 2. Hence, the self-repellence in the myopic model is much

weaker than for weakly self-avoiding walk. This is intuitively clear, because

the growing polymer does not rearrange itself, so that it gets stuck in an

energetically suboptimal shape.

Tóth [To95] investigates a version of the myopic walk where the

choice of the two neighbors is not made according to the site local times,

but the bond local times, i.e., the number of previous jumps along the

bonds between Sn and Sn ±1. In this model, it turns out that a variant of

the Markovian description for the sequence of up-step numbers

m(x)={0 < i [ T : Si−1=x−1, Si=x} at a certain stopping time T applies,

as in Section 1.3 above. This nice observation allows for a proof of a

scaling limit law for the end-to-end distance at certain independent geo-

metrical random times whose parameter goes to infinity (or, equivalently,

for the Laplace transforms of the properly scaled endpoint). More preci-

sely, Tóth proves a result which suggests that n−2/3Sn converges weakly to

some non-trivial distribution which is identified analytically. He also

conjectures that the appropriately scaled path converges weakly. Tóth and

Werner [TW98] construct a candidate for the limit process, the self-repel-
ling motion, which should be seen as the continuous analog of the above
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model. This process has interesting path properties not shared by Brownian

motion or the Edwards model. The proof that this process is really the

limiting process of the discrete model has not been tackled yet.
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